Differential Effects of Lichens versus Liverworts Epiphylls on Host Leaf Traits in the Tropical Montane Rainforest, Hainan Island, China
نویسندگان
چکیده
Epiphylls widely colonize vascular leaves in moist tropical forests. Understanding the effects of epiphylls on leaf traits of host plants is critical for understanding ecological function of epiphylls. A study was conducted in a rain forest to investigate leaf traits of the host plants Photinia prunifolia colonized with epiphyllous liverworts and foliicolous lichens as well as those of uncolonized leaves. Our results found that the colonization of lichens significantly decreased leaf water content (LWC), chlorophyll (Chl) a and a + b content, and Chl a/b of P. prunifolia but increased Chl b content, while that of liverworts did not affect them as a whole. The variations of net photosynthetic rates (P n ) among host leaves colonized with different coverage of lichens before or after removal treatment (a treatment to remove epiphylls from leaf surface) were greater than that colonized with liverworts. The full cover of lichens induced an increase of light compensation point (LCP) by 21% and a decrease of light saturation point (LSP) by 54% for their host leaves, whereas that of liverworts displayed contrary effects. Compared with the colonization of liverworts, lichens exhibited more negative effects on the leaf traits of P. prunifolia in different stages of colonization. The results suggest that the responses of host leaf traits to epiphylls are affected by the epiphyllous groups and coverage, which are also crucial factors in assessing ecofunctions of epiphylls in tropical forests.
منابع مشابه
Functional Trait Trade-Offs for the Tropical Montane Rain Forest Species Responding to Light from Simulating Experiments
Differences among tropical tree species in survival and growth to light play a key role in plant competition and community composition. Two canopy species with contrasting functional traits dominating early and late successional stages, respectively, in a tropical montane rain forest of Hainan Island, China, were selected in a pot experiment under 4 levels of light intensity (full, 50%, 30%, an...
متن کاملSpatiotemporal patterns and dynamics of species richness and abundance of woody plant functional groups in a tropical forest landscape of Hainan Island, South China.
Tropical forests are among the most species-diverse ecosystems on Earth. Their structures and ecological functions are complex to understand. Functional group is defined as a group of species that play similar roles in an ecosystem. The functional group approach has been regarded as an effective way of linking the compositions of complex ecosystems with their ecological functions. To understand...
متن کاملFagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances...
متن کاملEvidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China
Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis technique. Results showed...
متن کاملMorphological, photosynthetic and water relations traits underpin the contrasting success of two tropical lichen groups at the interior and edge of forest fragments
BACKGROUND AND AIMS Forest edges created by fragmentation strongly affect the abiotic and biotic environment. A rarely studied consequence is the resulting impact on non-vascular plants such as poikilohydric lichens, known to be highly sensitive to changes in the microenvironment. We evaluated the impact of forest edge and forest interior on the distribution of two groups of crustose lichens ch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014